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ABSTRACT

This paper provides the globally optimal solution for both minimizing and maximiz-
ing the squared Frobenious norm of YQX (where X and Y are arbitrary compatibly
dimensioned matrices) over the class of orthogonal matrices Q. The solution is in
closed-form and does not require iteration. The specialization of this optimization
result to 3 dimensions is found applicable to optimally orienting spacecraft reaction
wheel actuators with respect to specified torque, momentum storage, and power re-
quirements.

1 INTRODUCTION

Reaction wheels are often used as actuators for controlling spacecraft attitude. This paper
takes an optimization approach to finding the best way to orient three reaction wheel actu-
ators on an orbiting spacecraft. For this purpose, a quadratic cost function is constructed
based on torque, momentum storage, and power requirements. The quadratic cost has the
form of a Frobenious norm ||[YQTX||3 where the matrix @ € R¥3 is orthogonal and the
matrices Y and X are nonzero matrices of compatible dimensions.

In addressing this problem, the quadratic cost problem is first generalized to an arbitrary
number of dimensions, i.e., for the case where @ € R™X™ with m arbitrary. The globally
optimal solution is given in Appendix A for both minimizing and maximizing the quadratic
cost over Q). The solution is provided in closed-form and does not require iteration. The op-
timization result is then specialized to 3 dimensions and applied to the problem of optimizing
reaction wheel orientation. The full version of this work was first reported in [1].



2 BACKGROUND

Let the vector z,, € R3 denote a physical quantity (e.g., torque, momentum, etc.) such that
the ¢’th element of z,, is associated with the i’th reaction wheel, i = 1,2, 3. Vectors defined
in this manner will be said to be in wheel coordinates. The mapping from wheel coordinates
to body coordinates is given by the expression,

Ty = Az, (2.1)

A= [a,l, as, a3] ) (22)

where A € R3*3 denotes a 3 x 3 wheel orientation matrix (with columns q;, i = 1,2,3),
and z, is the corresponding vector quantity in spacecraft body coordinates. Physically, the
i’th column of the A matrix denotes the orientation of the i'th reaction wheel expressed as
a unit vector in body coordinates. Hence the columns of the A matrix are not arbitrary, but
are each constrained to have unit norm, i.e.,

ala; =1, i=1,2,3 (2.3)

Note, however, that in the present treatment, the columns of A are not required to be
orthogonal. This permits the reaction wheels to attain (possibly) skewed configurations. -

The approach in this paper optimizes over the complete matrix A. This parametrization
is the most general possible, and avoids imposing a-priori restrictions on wheel geometry.
This is in contrast to earlier results which impose special structures to simplify the problem.
For example, the approach in Fleming and Ramos [6] optimizes over the single cant angle
associated with a 4-wheel square pyramid configuration, while the approach in Hablani [9]
optimizes over the two angles associated with a 4-wheel rectangular pyramid. In principle, the
extra degrees of freedom lead to better performance, but must be traded against a potentially
more complex implementation.

3 REQUIREMENTS

Reaction wheel requirements are most simply stated in terms of an idealized set of three
reaction wheels which are assumed be oriented along each of the body axes. For example,
a computer simulation can be run which assumes (artificially) that the reaction wheels are
oriented along the body axes, to numerically generate the wheel torque and momentum
storage requirements. For notational purposes, all quantities associated with such an idealized
reaction wheel frame will be denoted with a star '+'. _ -

The baseline scenario (motivated by the emerging JPL/NASA Europa orbiter mission)
will involve an orbiting spacecraft which accumulates momentum in a nearly repetitive fashion
due to periodic orbital dynamics and attitude histories. Because mass is a critical factor in
the Europa design, the reaction wheels will be operated in a bipolar fashion, allowing for
zero-rate crossings and taking advantage of their full momentum excursion.



3.1 Momentum Requirements

At some starting time ¢ = 0, the spacecraft momentum is assumed to be brought (by active
management) to a starting momentum “bias” level denoted as b* (Nms) in idealized reaction
wheel coordinates. The idealized reaction wheels then start accumulating momentum over
the orbit with both periodic and secular components to give a total stored momentum at
time ¢ of A*(¢). It will be convenient to define the momentum accumulated in ezcess of b* as
Ah*(t), so that the total stored momentum can be written as,

h*(t) = b + AR*(2) (3.1)

The accumulation of momentum continues until some specified time T (generally a fixed
multiple or fraction of the orbital period) at which time the stored momentum is brought
back again by active management to its starting bias level of *. The process then repeats
in this fashion, defining a nominal momentum management strategy over the course of the
mission.

It will be convenient to map the momentum bias b* into wheel coordinates to give the
vector b i.e.,

b= A" (3.2)

Consider a momentum storage vector h*(t) € R? at time ¢ in body coordinates which must
be attainable using the designed wheel orientation. The momentum vector can be similarly
mapped into wheel coordinates as,

hu(t) = AR (2) (3.3)

It is assumed that all wheels are identical, each with a maximum momentum storage capacity
of £4 (Nms). Then conditions which ensure that no wheel is exceeding its maximum storage
capacity at time ¢ are given by,

-Bl<A'w@t)y<p 1 (3.4)
where,
1
1811 (3.5)
1

Note that using (3.1), the ¢ = 0 case can be treated separately, and (3.4) can be broken into
the two conditions,

-8l<b<pl  fort=0 (3.6)

Bl <b+ATAR () <1 for0<t<T (3.7)

Constraints (3.6) and (3.7) are functions of b and A and specify the basic momentum
requirements in wheel coordinates.



3.2 Torque Requirements

The torque required in body coordinates during this period of time is denoted as the time-
varying torque vector 7*(t) € R3. At each time, the torque vector 7*(t) must be attainable
using the designed wheel orientation. The torque vector can be mapped into wheel coordi-
nates as,

Tw(t) = AT (2) (3.8)
where 7,,(t) € R? denotes the torque vector in wheel coordinates. It is assumed that all
wheels are identical, each with maximum torque capability of £+ (Nm). Then the condition
which ensures that no wheel is exceeding its maximum torque capacity at time ¢ is given by,

—y1<A 7)<yl (3.9)

Constraint (3.9) is a function of A and specifies the basic torque requirements in wheel
coordinates.

3.3 Power Requirements

Let the total power expended due to reaction wheels at time ¢ associated with a specific
wheel configuration be denoted by P(t). The power dissipated P(t) will be assumed to be
approximated by the model P;(¢t) defined as,

Pi(t) = po + of[w(®)lx (3.10)

where the wheel speed vector w(t) = [wi(£), wa(t), w3(t)]” has components w;(t) which cor-
respond to the speed of the i’th wheel, and || - [[1 denotes the standard L; vector norm,

3
[[w@]: = }_',: |lwi(2)] (3.11)
1=
The constant pg in (3.10) accounts for power loss in the electronics and other fixed dissipative
effects. The wheel rate term w(t) captures long term dissipation effects associated with
countering frictional torques. The value for o is best obtained by fitting empirical data.
The angular acceleration w is intentionally omitted from this model since it is not a major
contributor to long-term power dissipation issues. However, it is important for calculating
peak-power requirements (e.g., during maneuvers) and should be checked against the final
design.
For optimization purposes, the P; power model (3.10) will be replaced by the P, model
given below,

Py(t) = po + of|[w(?)]]2 (3.12)
where [| - ||, denotes the standard L, (Euclidean) vector norm,
3 7
lw@il = (E ) | .13



The P; model (3.12) only approximates the P; model, but has the advantage of leading to a
more tractable optimization problem. The L; norm can be bounded on either side by the L,
norm as (8],

lw@®lz < lw@ll: £ V2 [[w(?)ll2 (3.14)

Hence, the minimization of P, power indirectly acts to minimize P; power to within a factor
of v/2. Numerical results indicate that this approximate approach can be very effective.
It is known that the wheel speed is proportional to the wheel momentum, i.e.,

Lyw(t) = hy(t) = A7Th*(2) (3.15)

where I, (Kg m?) is a scalar value for the individual wheel inertia (assumed to be the same
for all wheels). Using (3.15), the P, power model (3.12) can be rewritten as,

Py(t) =po + %HA‘lh*(t)[b (3.16)

The condition for power P;(t) to be less than some desired specified value P; is then given
by,

Pl
o
where p = P; — py. As done for the momentum, the ¢ = 0 case can be broken out separately

to give the two constraints,

A7 R @)l < (3.17)

il < 22, fore=0 (3.18)
1B+ A AR ()]s < ?a{ﬂ, for0<t<T (3.19)

Constraints (3.18) and (3.19) are functions of b and A and specify the basic power require-
ments.

3.4 Discussion

A feasible design of b and A is defined as one which meets the momentum storage requirements
(3.6)(3.7), torque requirements (3.9), and power requirements (3.18)(3.19). The present
approach will be to optimize a certain cost function which tends to drive b and A towards a
feasible design. The cost function is discussed in the next section.



4 COST FUNCTION

The optimization problem will focus on a specific discrete set of times ¢, £ = 1,...,n. At
each time ¢, let the desired torque be given as 7*(k) and the excess accumulated momentum
be given as Ah*(k). Here, the ¢t dependence has been replaced by k for notational simplicity,
since the set of constraint times is now finite.

The goal is to optimize a cost function C(b, A) over the choice of both the initial bias
momentum b and the reaction wheel orientation A4, i.e.,

min C(b, A) (4.1)
The cost function is taken to be the sum of three components:
C(b,A)=Cuy+Cr+Cp (4.2)

where each component is defined below.

Momentum Cost Function

Ou(br4) = 5 (113 + 3 [+ 4= 8 (R «3
k—
Torque Cost Function
1 u -1_=x

Or(t 4) = 7 2 14717 (B (44)

Power Cost Function

2

Cr(6,4) = i (18 + 35 o+ 4280 () («5)

The cost function (4.2) is a weighted sum of L, norms (i.e,. weighted least squares
criteria) where the weightings are chosen to normalize the importance of each term according
to their specified requirements. For example, the 31; weighting associated with Cjs cost
in (4.3) is motivated by the need to satisfy the momentum storage requirements given in
(3.6)(3.7). Similarly the scalings for Cr and Cp above are motivated by the need to satisfy the
torque requirements (3.9), and power requirements (3.18)(3.19), respectively. These scalings
transform the cost into dimensionless units, and drive each of the quantities to satisfy their
desired constraints. This overcomes the usual difficulty of scaling costs in problems with
multiple objectives.

Numerical values for 8,7, e, B, I, are needed to properly scale the optimization problem.
In practice, these parameters can be chosen based on a nominal reaction wheel design. The
choice of times ¢, at which to enforce the constraints is left up to the designer. For the present
paper, t; will not be interpreted as time, but rather, k will be used as an index to define a set
of linear constraints forming a simplex which overbounds the region containing all simulated



momentum and torque values. Specifically, the eight corners of a box aligned with the body
axes will be used to specify the constraints associated with the idealized star frame. Similar
formulations making use of torque boxes and momentum cylinders have appeared elsewhere
in the literature [5][9].

5 OPTIMIZATION PROCEDURE

5.1 Parametrization of Orientation Matrix

It will be convenient for optimization purposes to represent the matrix A in terms of its QR
factors (cf., (8]), i.e.,
A=QR (5.1)

where @ € R3*3 is an orthogonal matrix (i.e., QQT = QTQ = I) and R is an upper triangular
matrix. Intuitively, the R matrix represents the skewness of the wheel coordinate frame, and
the @ matrix represents any rotations and/or reflections.

By the orthogonality of @ the unit norm constraints (2.3) on the columns of A become
unit norm constraints on the columns of R. Hence, R is upper triangular with unit norm
columns. Accordingly, it will be parametrized as follows,

1 @ C
R=|0 (1-a¥z b(1-2)3 (5.2)
00 (1-8)5(1 - )}

It can be verified that the columns of R are unit norm by construction. In order to prevent
the square-root terms in R from becoming imaginary, it will be convenient to impose the
following linear constraints,

-1 < @<1
-1 < b<1
-1 < <1 (5.3)

It is proved in [1] that without loss of generality, the square roots in the definition of R
(5.2) can always be taken as positive.

5.2 Three Wheel Optimization Algorithm
Using the QR factorization of A, the cost function (4.2)-(4.5) can be rewritten as,

CORQ) = ZlblE+ 5 Y0+ RQARBIE+ 5 S IR ®IE  (54)
k=1 k=1



where,
(5.5)
subject to @ orthogonal, and R upper triangular with unit norm columns.

The basic approach to minimizing C(b, R, Q) is outlined in the following sequence of steps.

Step 0: Initialize

Q=1 (5.6)
Step 1: Optimize over b, R
bR =arg min C(b, R, Q) (5.7)
subject to R upper triangular with unit norm columns.
Step 2: R
Calculate the bias in body frame b*
b =0FRb (5.8)
Step 3: Optimize over Q)
Q =arg mcgn C(R™'Q"v*,R,Q) (5.9)

subject to @ being an orthogonal matrix i.e., QTQ = I.

Step 4: Repeat
Repeat Steps 1 to 3 until convergence is obtained.

5.3 Discussion

In Step 1, the matrix R is parametrized as (5.2), subject to linear constraints (5.3), thus
ensuring that it will be upper triangular with unit norm columns as desired. The nonlinear
cost function is optimized subject to linear constraints using Sequential Quadratic Program-
ming (SQP). Details can be found in Appendix A of [1]. It is worth noting that Step 1 is
equivalent to, R

b*, R = arg min C(R™'Q™v",R,Q) (5.10)

where it is emphasized that this optimization is equivalently taken over the optimal bias mo-
mentum in body frame coordinates b*. This fact is important for conceptual reasons discussed
below. However, for the actual numerical optimization, it is more convenient to use the bias
momentum b in reaction wheel coordinates since it is b and not b* that appears linearly inside
the various norm terms of C. R

In Step 2, the calculation of the momentum bias in body frame b* is made for explicit use
in the expression (5.9) which keeps it invariant during optimization of @ in Step 3.



In Step 3, the optimization over Q is performed using a globally optimal analytical solution
derived in Theorem A.1l of Appendix A.

Together, the optimization in (5.10) and (5.9) (equivalently, Steps 1 and 3) constitute
alternating minimizations between the two independent parameter sets {b*, R} and {Q}.
This relazation type approach ensures that the algorithm gives a sequence of solutions with a
monotonically decreasing cost. Since the cost is bounded below (by zero), the cost converges.
Hence the algorithm is convergent in the sense of the cost. However, it cannot be claimed
that the converged solution is the globally optimal solution to the original problem. Rather,
the main motivation for this approach is to take advantage of a new result in Appendix A
which provides a closed-form analytical solution to the subproblem of optimizing over Q.

6 NUMERICAL RESULTS

A case study is given in this section to demonstrate the use of the algorithm in Section 5.2 for
optimizing reaction wheel orientations. This example is consistent with requirements for the
Europa orbiter mission based on preliminary modeling results. The requirements are more
stringent in the Y axis because it corresponds to the orbit normal direction.

6.1 Nominal Wheel Characteristics

Individual wheel inertia

Iw=.0509305 (Kg-m"2)

Max individual wheel momentum storage capacity
beta=8 (Nms)

Max single wheel torque capability

gamma=.02 (Nm)

Power dissipation scale factor

alpha=.025 watt/(rad/sec)

6.2 Initial Conditions

The initial design is taken as the identity A = I, and the initial momentum bias is taken to
be zero b* = 0.

6.3 Requirements (Europa Example)

Momentum Box x,y,z (Nms)

X Y Z
Max 3.4300e+000 3.8000e-003 6.9700e+000
Min ~-2.2200e-001 -4.9800e+000 2.9400e+000

Torque Box x,y,z (Nm)
X Y 2



Max 1.77000-003 1.7500e-003 1.4000e-003
Min ~1.7200e-003 -9.8600e-003 -4.8500e-004

Total power allocation-pbar (watts)
3.1500e+001

a3 206 296 206 2 3k 3¢ 266 206 26 2 e e e 30 o o 3 3 ke ke e ok o 2 a6 6 3k 3 o Ak e ke ok e 36 o8 o 3K ok 36 3ok e 3k e o o ok e ok e ok ok 2k oK ok

Itrn Cost Max Momentum Max Torque Max Power

Allocation: 8.0000e+000 2.0000e-002  3.1500e+001
0 7.0418e+000 6.9700e+000 9.8600e-003 7.5495e+000
1 3.1403e+000 1.0241e+001  8.2358e-003 9.2542e+000
2 3.0414e+000 4.0107e+000 7.5552¢-003  3.9294e+000
29 3.0374e+000 4.8707e+000 7.5861e~003 3.1461e+000
30 3.0374e+000 4.8750e+000 7.5826e-003 3.1506e+000

The final optimized wheel configuration is summarized below and is depicted graphically
in Figure 6.1.

5.8700e — 001  2.8918e — 001  —5.3041e — 001 ~1.4257
A= | 8.0345e - 001 —2.3296e — 001 8.0643e — 001 ; b= 2.2116 (6.1)
—9.9452¢ — 002 9.2850e — 001  2.6143e — 001 —4.4042

As expected, the strong projections [-8.0345e-001,2.3296¢-001,-8.0643e-001] in the second
row of A indicate that the y axis is favored by the optimized wheel configuration. As an intu-
ition check, the optimized momentum bias is seen to be close to the values [-1.6040,2.4881,-
4.9550] which center the momentum box about zero.
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Optimized Reaction Whee! Orientation

1.5
157X o os !
X Axis ~0.5
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Figure 6.1: Optimized Reaction Wheel Orientation
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7 CONCLUSIONS

This paper has developed an optimization-based approach to orienting three reaction wheels
on an orbiting spacecraft. The main consideration has been to find an orientation matrix
which minimizes mass and power of the required reaction wheels, while meeting torque and
momentum storage requirements and allowing a specified maximum amount of time between
momentum dumps.

The optimization is nonlinear in both the cost and constraints. A QR factorization
of the wheel-to-body transformation allows separate optimization over the rotation @ and
skewness R of the reaction wheel frame. The initial momentum bias b is also optimized for
momentum management purposes. The optimization over the ¢ matrix has been performed
analytically based on a specialization of a new result proved in Appendix A, which gives a
general expression for the globally optimal @ of arbitrary dimensions. The R,b parameters
are optimized using Sequential Quadratic Programming (SQP).

A numerical example based on NASA’s emerging Europa orbiter, was given to show that
the algorithm converged as expected, leading to a final (intuitively reasonable) orientation
which tended to favor the body axis having the most stringent requirements.
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A APPENDIX A: Frobenious Norm Optimization

This appendix discusses Step 3 of the algorithm in Section 5.2 where the cost C (R1QTb*, R,Q)
in (5.4) is optimized with respect to the orthogonal matrix Q. The cost in Step 3 in conve-
niently put into the following form,

C(R™Q™F, R, Q) = [[YQ" X} (A1)

where,

¥ = [f)_’ b* + Ah (1)’”', b* + Ah (n), T (1)’“., T (n)] (A2)
c c c 24 v

Y = ﬁ-l ' (A3)
Here, ||[M]||; denotes the Frobenious norm of a given matrix M [8],
1Ml = Tr{MTM}? (A.4)

and corresponds simply to the sum of squares of the elements of M. The optimization of
(A.1) over choice of Q € R3*3 is a special case of the general problem treated in the following
result which is applicable to the case where Q € R™ ™ with m arbitrary.

THEOREM A.1 Let X € R™", Y € R*™ be arbitrary but non-zero matrices. Consider
the following cost function involving the Frobenious norm,

C(Q) = lYQTX|[; = Tr{XTQYTYQ"X} (A.5)
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where the matriz QQ € R™*™ is constrained to be orthogonal, i.e.,
QT =Q™ (A.6)

Let P, and Py be orthogonal matrices obtained from the following eigenvector decompositions,

YTY = PA P (A.7)
XXT = P,APT (A.8)
Az = dia’g{)‘xh ey /\zm} (Ag)
Ay = diag{My1, s Agm} (A.10)

where the eigenvalues in A, and Ay are each assumed to be ordered in a monotonically non-
increasing sequence, i.e.,

/\zl 2 /\zz 22 )\zm 2 0 (A'll)
MLZA22 0o 2 Aym 20 (A.12)
Then a choice of @ which globally mazimizes C(Q) is given by,
Q=PPF (A.13)
and a choice of Q which globally minimizes C(Q) is given by,
Q= P,JP;‘" (A.14)
where J is the reverse identity,
0 -0 1
JA 190 (A.15)
0
10 0
[ ]

The proof of Theorem A.1 will require some preliminary definitions and results.
Permutation Matrices [2] A permutation matrix P of order m is an m X m matrix possessing
exactly a single element of value “1” in each row and column, with all other elements zero.
There are known to be exactly m! permutation matrices of any given order m. "

Doubly Stochastic Matrices [2] A square matrix A € R™ ™ is doubly stochastic if its elements
A = {a,;} satisfy the following conditions,

a; 20 (A.16)

m
Y oai=1 Yay=1 (A.17)
j=1



Birkhoff’s Theorem [2][4] Any doubly stochastic matrix A € R™*™ can be written as a
convex combination of permutation matrices, i.e.,

m!
A= Z ’U)kpk (A18)
k=1
m!
wy > 0; Zwk =1 (A.19)
k=1
where {P;}, k =1, ...,m! denotes the set of permutation matrices of order m. ]

Hardy’s Theorem [8] Let {b1,...,bs} and {ci,...,cm} be monotonically nonincreasing se-
quences of numbers. Associate with each ¢ = 1, ..., m a distinct index j to define the mapping
between indices j(z). Then the sum-of-products cost i~ ; b;c;;) is maximized when j(i) = i
for all 4, and minimized when j(¢) = m — i+ 1 for all . |

It is necessary to first prove the following result.

LEMMA A.1 (Bounds on an inner product) Consider vectorsb = [by,...,b,]F and[cy, ...

where {by, ...,bm} and {c1, ..., cn} are monotonically nonincreasing sequences of numbers. Let
A € R™X™ be a doubly stochastic matriz. Then the inner product bT Ac can be bounded above
and below as follows,

brJec<brAc<blc (A.20)
where J is the reverse identity given by (A.15). Furthermore, the lower bound is achieved
with equality by choosing A = J, and the upper bound is achieved with equality by choosing
A=1. ]
Proof: Using Birkhoff’s Theorem (A.18)(A.19), the matrix A in the expression b7 Ac can be
replaced by the convex combination of permutation matrices (A.18) to give,

m!
bTAc = Z wib? Pee (A.21)
k=1

Without loss of generality, we can define the first two permutation matrices as,
P=I, PB=J (A.22)

It is noted that each inner-product term b7 P,c appearing in the summation of (A.21) can
be interpreted as a sum-of-products of elements of b with elements of ¢, as reordered by
multiplication with the permutation matrix P;. Accordingly, by Hardy’s theorem, the largest
of the terms {bT P,c}{, is given by using the identity permutation P, = P; = I. Hence, an
upper bound on the convex combination (A.21) is found by putting all of the weight into the
first term (i.e. w; = 1, w; =0 for i # 1) to give,

m!
bTAdc= Y webTPec < 6T Pic=bc (A.23)
k=1
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This establishes the upper bound in (A.20). Note that this upper bound is achieved with
equality when A = 1.

Similarly, by Hardy’s theorem, the smallest of the inner-product terms {bT Pic}, is
given by using the reverse-ordering permutation P, = P, = J. Hence, a lower bound on the
convex combination (A.21) is found by putting all of the weight into the second term (i.e.
we =1, w; =0 for i # 2) to give,

m!
bTAc= 3 wpb"Pee > 6T Pye=b"Jc (A.24)

k=1
This establishes the lower bound in (A.20). Note that this lower bound is achieved with
equality when A = J. ]

At this point Theorem A.1 can be proved. The basic idea is to first show that the cost
C(Q) has the special inner product form bT Ac, as treated in Lemma A.1. Second, it is shown
that the upper and lower bounds on the cost ensured by result (A.20) of Lemma A.1, are
achieved with equality for the optimal choices of @ given by (A.13) and (A.14) of Theorem
A.1. As desired, this implies that they are in fact global extrema.

Proof of Theorem A.1l: Define the cost function as,

CQ) =YQTX|[} = Tr{X"QY"YQ" X} (A.25)

Rearranging using the eigenvalue decompositions (A.7)(A.8) and standard trace identities
gives,

CQ) = Tr{QYTYQTXxXT} (A.26)
= Tr{QP,A,PTQTP,A.PT} (A.27)
= Tr{APIQTP.A;PFQP,} (A.28)
= Tr{A,LTA,L} (A.29)
= Tr{AIAJLTAIAIL} (A.30)
1 i 1 1
= Tr{AJLTAZAZLAZ} (A.31)
= |[AZLAJ I (A.32)
m m 11 2 m m
= L3 (M) =X kil (A3
i=1j=1 i=1 j=1
= AA)\, (A.34)
where the following quantities have been defined,
L £ PTQP, = {t;} (A.35)
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Az = [Aaty ooy Aom) T € R™ (A.36)
Ay = Mty oo Aym]T € R™ (A.37)
A=L®L={a;=10} (A.38)

Equation (A.29) follows from (A.28) by the definition of the orthogonal matrix L in (A.35);
equation (A.33) follows from the fact that a squared Frobenious norm of a matrix is the sum-
of-squares its elements; and equation (A.34) follows by vectorizing equation (A.33), where
the symbol ® denotes the Hadamard product (i.e., the element-by-element multiplication of
two matrices).

Since L is an orthogonal matrix (i.e., LTL = LLT = I) each of its rows and columns have
unit norm so that the matrix A in (A.38) is doubly stochastic. In addition, the elements of
vectors Az, Ay are ordered from highest to lowest, so that the result (A.20) of Lemma A.1 can
be applied to the inner product (A.34) to give,

AT SCQ) AT, (A.39)

The lower bound in (A.39) is achieved with equality by the choice A = J, which using (A.38)
gives .
L=Ji (A.40)

where J7 denotes any Hadamard square root of the matrix J (i.e., any J ? such that J =
Ji ® J7). Substituting (A.40) into (A.35), and solving for Q gives the global minimum as,
Global Minimum

Q=P JiPF (A.41)

For simplicity one can choose (non-uniquely) J2 = J which gives (A.14) as desired. However,
J7 can alternatively be chosen as one of 2™ possible Hadamard roots of J formed by changing
the sign on any combination of 1’s in J. Any one of these choices gives a alternative global
maximum.
The upper bound in (A.39) is achieved with equality with the choice A = I which using
(A.38) gives,
L=1I2 (A.42)

where Iz denotes any Hadamard square root of the identity matrix I. Substituting (A.42)
into (A.35) and solving for @ gives the global maximum as,
Global Mazimum

Q= P,IzPT (A.43)

For simplicity one can choose (non-uniquely) I# = I which gives (A.13) as desired. However,
I% can alternatively be chosen as one of 2™ possible Hadamard roots of I formed by changing
the sign on any combination of 1’s in the identity I. Any one of these choices gives an
alternative global maximum. u
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